

SAPPMA QUALITY WORKSHOPS / WEBINARS

SAPPMA WORKSHOP 1 - 16-11-2019

SAPPMA WORKSHOP 2 - 17-07-2019

SAPPMA WORKSHOP 3 - 19-02-2020

SAPPMA WORKSHOP 4 - 22-07-2020

SAPPMA WORKSHOP 5 - 22-10-2020

SAPPMA WEBINAR 1 - 25-02-2021

SAPPMA WEBINAR 2 - 24-03-2021

SAPPMA WEBINAR 3 - 20-04-2021

SAPPMA WEBINAR 4 - 25-05-2021

SAPPMA WEBINAR 5 - 24-06-2021

SAPPMA WEBINAR 6 - 22-07-2021

SAPPMA WEBINAR 7 - 25-08-2021

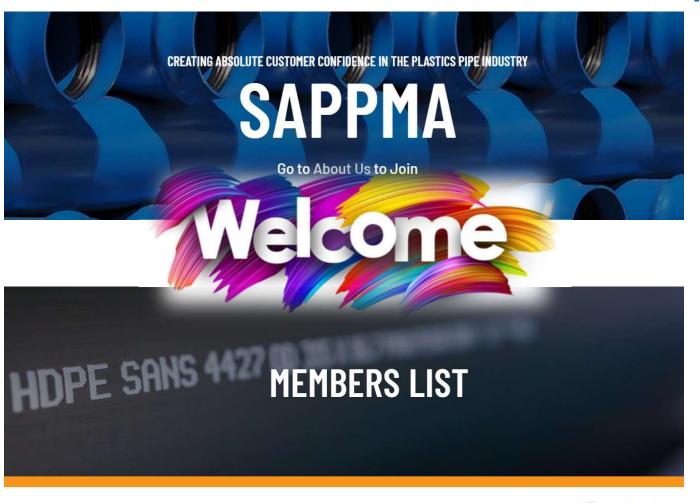
SAPPMA WEBINAR 8 - 21-10-2021 - PETER FISCHER

SAPPMA WEBINAR 8 - 21-10-2021 - PROF MARANGONI

SAPPMA WEBINAR 8 - 21-10-2021 - MIKE SMART

SAPPMA WEBINAR 8 - 21-10-2021 - DARREN

SAPPMA WEBINAR 9 - 24-11-2021

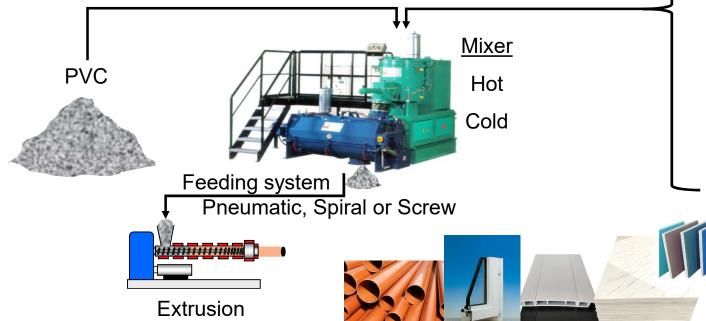


Welcome to the SAPPMA Members and Participants

Presenter

SAPPMA Webinar III

Deep-dive into the fundamentals of Calcium Carbonate in rigid PVC



- 1. What is calcium carbonate and its specifications?
- 2. Where & how to add it into rigid PVC process?
- 3. Why do we add calcium carbonate?

□ Lubricants

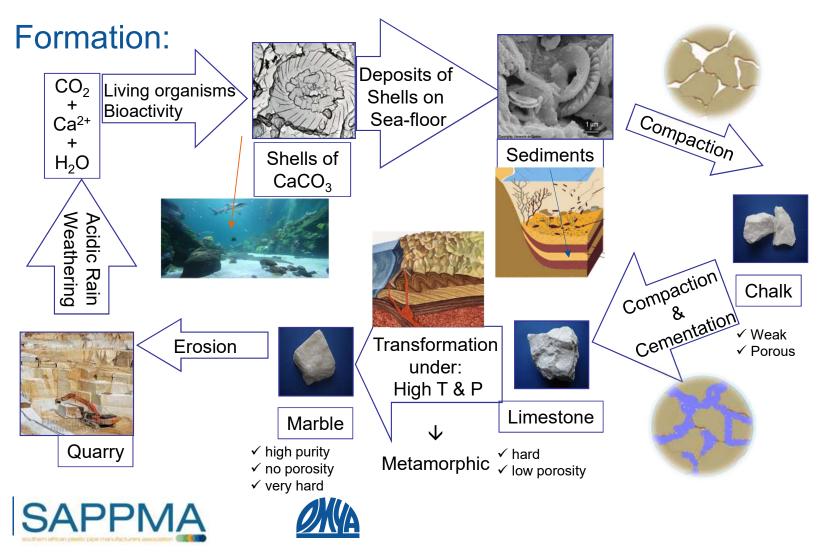
☐ Flow modifiers

■ Impact modifiers

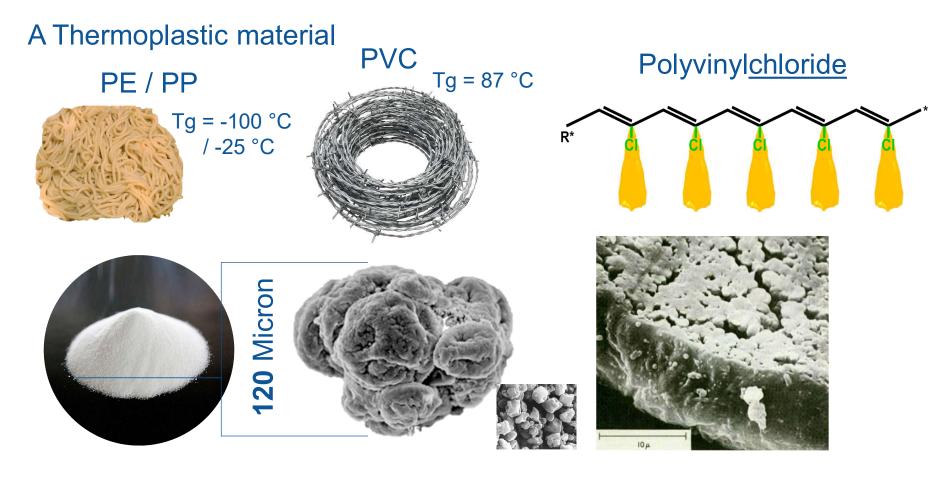
□ Antioxidants

□ UV stabilizers

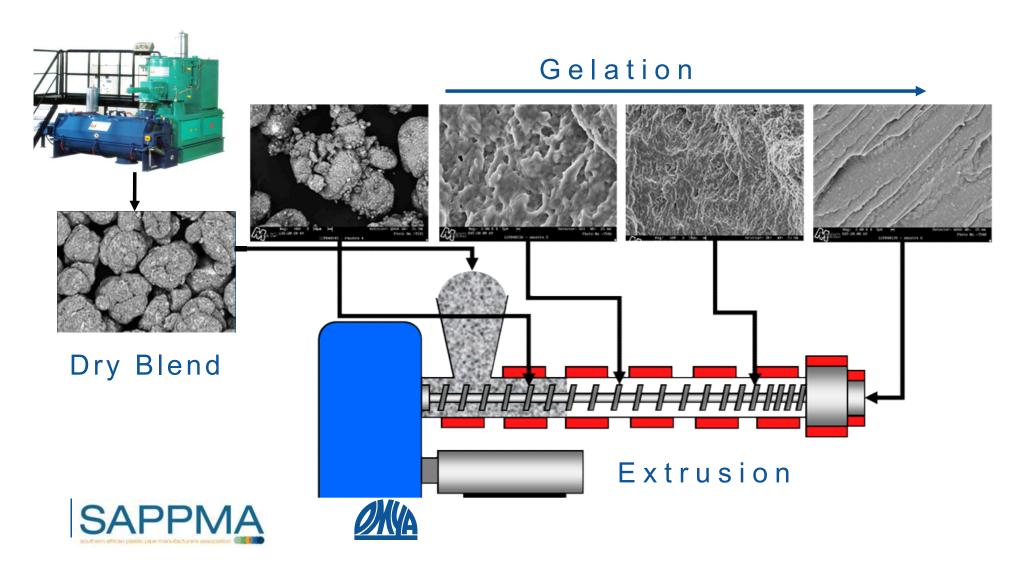
☐ Pigments/ Masterbatches

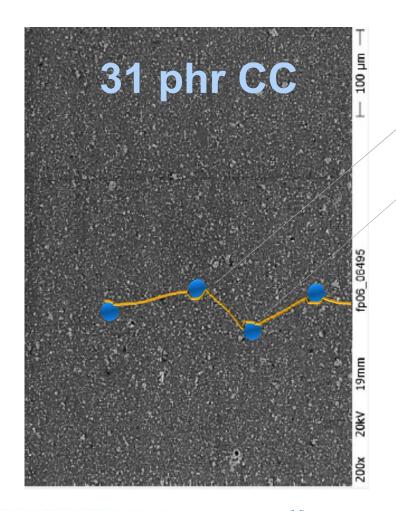

☐ Flame retardants

☐ Foam agents ...



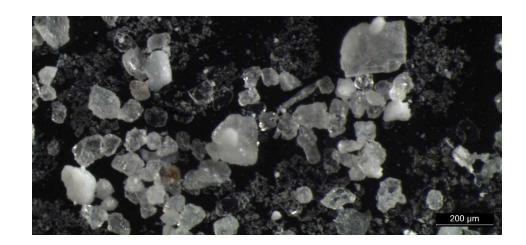
What is calcium carbonate?


What is rigid PVC?



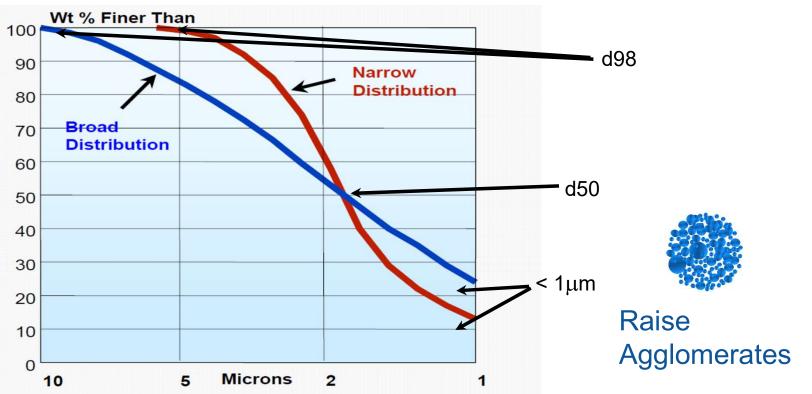
PVC Morphology

SEM Picture of a pipe's cross-section



Aggregates and Agglomerates

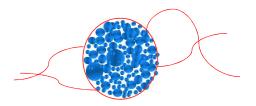
Oversize Particles


Which specifications of CC?

Particle size and PSD (Cumulative)

✓ Chemistry (purity)

✓ Whiteness and Brightness



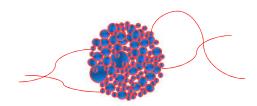
Which specifications of CC?

Agglomerates

wet CC?

Does PVC

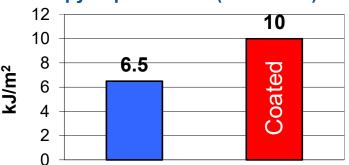
Interface between PVC & CC

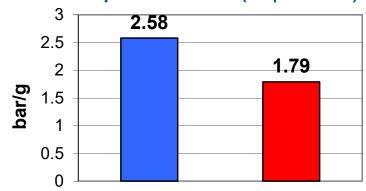


Surface Energy (mJ/m²)

- Water 73
- Coated CC 50
- PVC 40

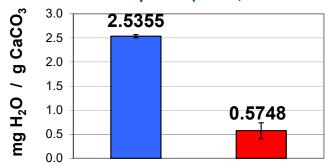
Surface Treatment (Coating)

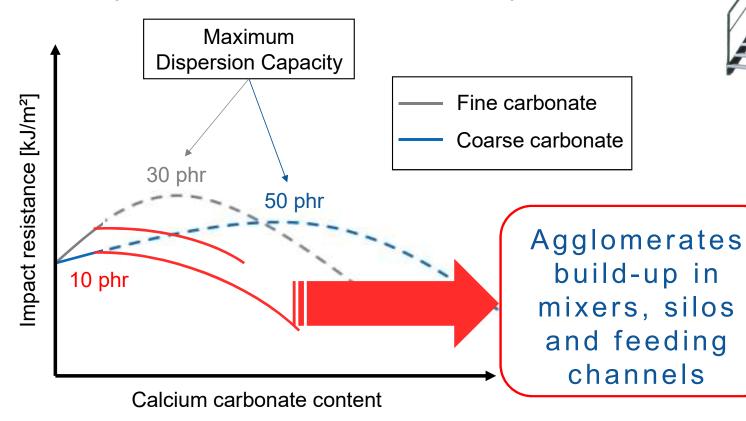



Which specifications of CC?

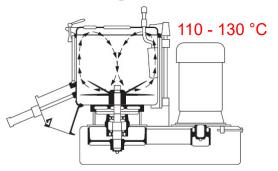
Treatment effects

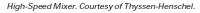
Charpy Impact at 0°C (DIN 53353)


Filter pressure value (14µm sieve)

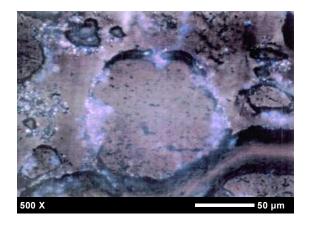

Moisture adsorption (23°C, 10 - 85% RH)

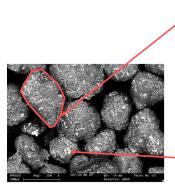
Where & How to add CC in rigid PVC process?

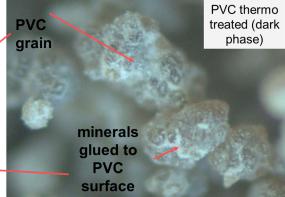

It depends on amount of CC and its particle size!?



Mixing & Processing

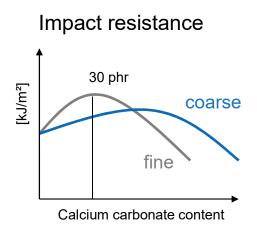


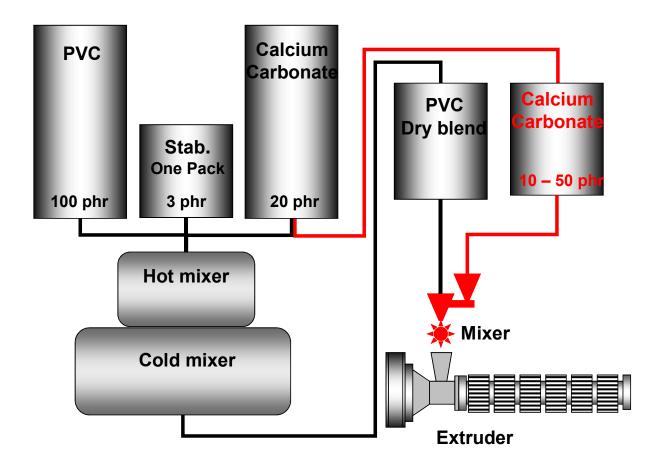




Tg = 87 °C

- ✓ All CaCO3 is bonded
- ✓ Free flowing
- ✓ Dust free




Step by Step addition Separation during **pneumatic** transport of dry-blend; > 10 phr < 20 phr PVC, stab & additives heat Calcium **PVC** up to 90 °C Carbonate Tg = 87 °C **PVC Dry blend** Stab. **One Pack** 100 phr 3 phr 20 phr Hot mixer Hot mixer 23°C - 120°C 23°C - 90°C Addition of CaCO3 and 90°C - 120°C TiO2 up to 20 phr in total **Cold mixer** and continuing mixing up to 120°C - 45°C 120 °C **Extruder**

Integrated Direct Addition

Mixing & Processing

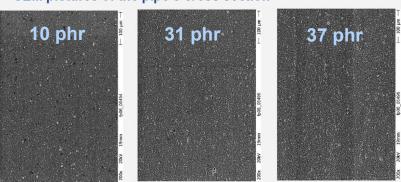
□ Separation during pneumatic transport of dry-blend; > 10 phr

☐ Separation during **spiral / screw** transport of dry-blend; > 20 phr

☐ Caking inside the hot mixer and diposite in silo; > 30 phr

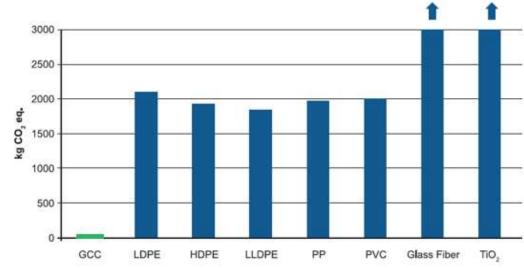
CaCO₃ attached

CaCO₃ non-attached



Direct Addition

SEM pictures of the pipe's cross section



☐ Ecological Effects

Natural, renewable and globally available

Carbon footprint of CaCO₃

62 emitted per ton of natural ground Calcium Carbonate* produced.

*Source: CCA LCI GCC dry, 2014, EU28-Turkey+Norway energy mix.

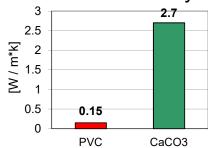
Renewability

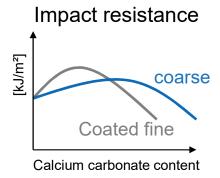
Calcium Carbonate is a renewable raw material

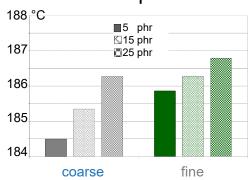
Calcium Carbonate Association – Europe A.I.S.B.L. Member of IMA-Europe

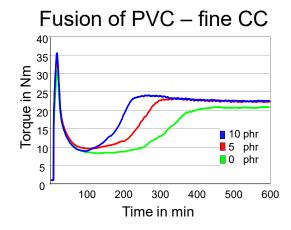
March 2016

Around 4 % of earth crust is made of calcium carbonate, making it one of the most common raw materials in nature. Calcium carbonate is ubiquitous in nature and is continuously replenished by means of natural cycles in rivers, lakes & oceans or formed as minerals in the form of shells, skeletons, stalactites and stalagmites. Commercial grades of calcium carbonate are produced from natural sources such as limestone, chalk or marble which are widely available around the world.

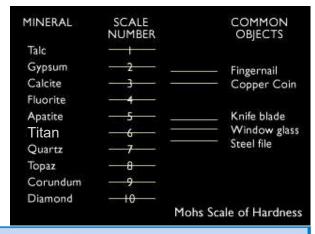

While a substantial increase of the use of calcium carbonate has been observed over the last decades, there is no scarcity of calcium carbonate deposits and there are proven reserves/resources for many centuries. More so, adequate and sustainable management practices have been implemented to foster use of resources efficiently. The results of two recent independent university studies¹ conclude that the annual replenishment of calcium carbonate varies from 8.8 to 14.5 billion tons/year in different environments. The annual consumption of calcium carbonate² in various markets (infrastructure, cement,...) being in a range of 4.5 Billion t/year, the replenishment rate (according to the ISO 14021 definition) exceeds the consumption rate. Therefore, calcium carbonate meets the criteria for a renewable material.





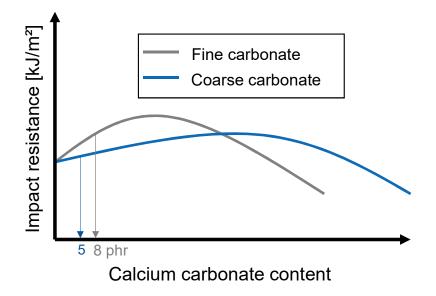


Melt Temprature



Abrasion

		low abrasion	high abrasion	
•	Aspect Ratio:	~ 1	> 5	
•	Mohs Hardness	1	10	
•	HCI insoluble	< 1%	> 2%	
•	Mid-sise (d50%)	< 1µm	> 5µm	
•	Top Cut (d98%)	< 5µm	> 30µm	
•	Coating	yes	no	



				8	
Shape	Sphere	Cube	Cuboid	Platelet	Fibre
Aspect	1	~1	1.4-4	5-100	>10
Examples	Glass spheres Silicate spheres	CaCO ₃ CaSO ₄	SiO ₂ BaSO ₄	Mica Talc Kaolin Graphite Al(OH) ₃	Glass fibres Asbestos Wollastonite Cellulose fibres Carbon fibres

□ Economical Effects

ingredient	density	price	compound A	compound B
	g/cm ³	€/Kg	current	new proposal
PVC	1.400	2.000	100.0	100.0
Stabi CaZn	1.300	3.200	4.3	4.3
Stabi Pb	1.600	2.000		
Lubricant 1	1.000	1.000	0.15	0.15
Lubricant 2	1.000	1.000	0.2	0.2
Additive 1	1.000	1.000		
Additive 2	1.000	1.000		
Impact modifier CPE	1.150	2.200		
Impact modifier Acrylate	1.030	2.600	0.0	0.0
Pigment - TiO ₂	4.200	2.500	0.5	0.5
Calcium carbonate 2T	2.700	0.200	5.0	
Calcium carbonate 95T	2.700	0.400		8.0
Total weight			110.150	113.150
Total volume			77.057	78.168
Total density [g/cm³]			1.429	1.448
Results				
Compound -				
Costs per weight		Price €/kg	1.964	1.932
Costs per volume		Price €/liter	2.808	2.796
Difference in costs A - B				
Difference in costs A - B	0.012€	0.42%		
Savings	constant volume calculation			
Total compound quantity with	10,000			
Cost savings € / year			82,314 €	
	density correc	ted new proposal		

What is calcium carbonate and its specifications?
 Purity, Fineness and Coating

2. Where & how to add it into rigid PVC process?

Process limitation and Agglomerates build-up in mixers, silos and feeding channels

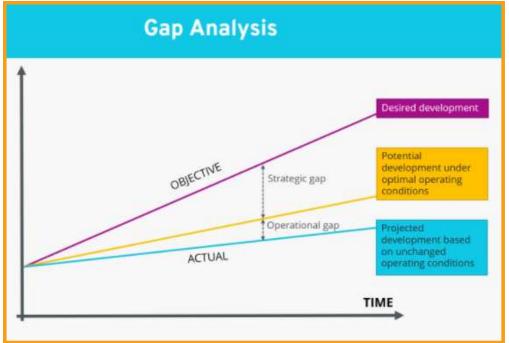
3. Why do we add calcium carbonate?

Ecological, Technical and Economical effects

Questions and Answers

QA

SAPPMA


ian@sappma.co.za admin@sappma.co.za

akalantari@omya-Idwala.com

Filling the gap

SAPPMA Webinar III 2022

